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Stochastic Calculus for Fractional Brownian Motion.
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Abstract

This paper describes some of the results in [5] for a
stochastic calculus for a fractional Brownian motion
with the Hurst parameter in the interval (1/2, 1). Two
stochastic integrals are defined with explicit expressions
for their first two moments. Multiple and iterated inte-
grals of a fractional Browinian motion are defined and
various properties of these integrals are given. A square
integrable functional on a probability space of a frac-
tional Brownian motion is expressed as an infinite series
of multiple integrals.

1 Introduction

Fractional Brownian motion is a family of Gaussian pro-
cesses that are indexed by the Hurst parameter H in the
interval (0, 1). These processes were introduced by Kol-
mogorov [10]. The first application of these processes
was made by Hurst [7], [8] who used them to model the
long term storage capacity of reservoirs along the Nile
River. Mandelbrot [12] used these processes to model
some economic time series and most recently these pro-
cesses have been used to model telecommunication traf-
fic (e.g., [11]). Two important properties of these Gaus-
sian processes for modeling are self similarity and, for
H ∈ (1/2, 1), a long range dependence. The self sim-
ilarity means that if a > 0 then (BH(at), t ≥ 0) and
(aHBH(t), t ≥ 0) have the same probability law where
(BH(t), t ≥ 0) is a (standard) fractional Brownian mo-
tion. The long range dependence means that if r(n) =
E[BH(1)(BH(n+ 1) −BH(n))] then

∑∞
n=1 r(n) = ∞.

Now a fractional Brownian motion is defined. For each
H ∈ (0, 1), a real-valued Gaussian process (BH(t), t ≥
0) is defined such that E[BH(t)] = 0 and

E[BH(t)BH(s)] =
1
2
[t2H + s2H − |t− s|2H ]
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for all s, t ∈ R+. If H = 1/2 then the fractional Brow-
nian motion is a standard Brownian motion (Wiener
process). These processes have a version with continu-
ous sample paths. In this paper H is restricted to the
interval (1/2, 1). The pth variation of such a process is
nonzero and finite for p = 1/H, that is, if (Pn, n ∈ N)
is sequence of partitions of [0, 1] that are refinements of
the previous and become dense in [0,1] then

lim
n→∞

∑ ∣∣∣BH(t(n)
i ) −BH(t(n)

i−1)
∣∣∣p = c(p) a.s.

where Pn = {t(n)
0 , . . . , t

(n)
n } and c(p) = E|BH(1)|p (e.g.,

[13]). For H > 1/2, (BH(t), t ≥ 0) is not a semimartin-
gale and not Markov. These facts require that a differ-
ent stochastic calculus be used.

In this paper some results of a stochastic calculus from
[5] are described. This description complements [4].
Some other approaches to stochastic calculus have been
given in [1], [2], [3]. In Section 2, a directional derivative
in the path space is given and two stochastic integrals
with respect to a fractional Brownian motion are de-
fined. The Wick product and the Hermite polynomials
are introduced. In Section 3, multiple and iterated in-
tegrals with respect to a fractional Brownian motion
are shown to satisfy many properties that are satisfied
for the analogous integrals with respect to a Brownian
motion. A square integrable functional on a probability
space of a fractional Brownian motion is expressed as
an infinite series of multiple integrals, which generalizes
the well known result for Brownian motion.

2 Some Methods for Stochastic Calculus

Let Ω = C0(R+,R) be the Fréchet space of real-valued
continuous functions on R+ with initial value zero and
the topology of local uniform convergence. There is
a probability measure, PH , on (Ω,F) where F is the
Borel σ-algebra such that on the probability space
(Ω,F , PH), the coordinate process is a fractional Brow-

p. 1



www.manaraa.com

nian motion, that is,

BH(t, ω) = ω(t)

for each t ∈ R+ and (almost all) ω ∈ Ω.

Let φ : R → R+ be given by

φ(t) = H(2H − 1)|t|2H−2. (1)

It follows directly that

E[BH(t)BH(s)] =
∫ t

0

∫ s

0

φ(u− v)dudv. (2)

Let f : R+ → R be Borel measurable. The function
f ∈ L2

φ if

|f |2φ =
∫ ∞

0

∫ ∞

0

f(s)f(t)φ(s− t)dsdt < ∞ (3)

The Hilbert space L2
φ is naturally associated with the

Gaussian process (BH(t), t ≥ 0). The inner product on
L2

φ is denoted by 〈·, ·〉φ.

A notion of directional derivative in Ω in directions as-
sociated with L2

φ is important in some computations
with stochastic integrals.

Definition 2.1 The φ-derivative of a random variable
F ∈ Lp in the direction Φg for g ∈ L2

φ is defined as

DΦgF (ω) = lim
δ→0

1
δ

[
F

(
ω + δ

∫ ·

0

(Φg)(s)ds
)
− F (ω)

]

if the limit exists in Lp where

(Φg)(t) =
∫ ∞

0

φ(t− u)g(u)du

and t ≥ 0. Furthermore, if there is a process (Dφ
sF, s ≥

0) such that

DΦgF =
∫ ∞

0

Dφ
sFg(s)ds

for each g ∈ L2
φ then the random variable F is said to

be φ-differentiable.

The notion of φ-differentiability is also defined for a
process.

Definition 2.2 The process (F (t), t ≥ 0) is said to
be φ-differentiable if for each t ∈ R+, F (t) is φ-
differentiable and DφF : R+ × R+ × Ω → R is jointly
measurable.

The Wick product of two random variables is denoted
�. This product is important in the construction of the
stochastic integrals (of Itô type).

Definition 2.3 Let L(0, T ) be the family of processes
on [0, T ] such that F ∈ L(0, T ) if E|F |2φ < ∞, F is
φ-differentiable, the trace of (Dφ

sFt, s, t ∈ [0, T ]) ex-
ists and E

∫ T

0
(Dφ

sFs)2ds < ∞ and for each sequence of
partitions (πn, n ∈ N) of [0, T ] such that |πn| → 0 as
n → ∞

n−1∑
i=0

E

[∫ t
(n)
i+1

t
(n)
i

|Dφ
sFt

(n)
i

−Dφ
sFs|ds

]2

and
E|Fπ − F |2φ

tend to 0 as n → ∞ where πn = {t(n)
0 , . . . , t

(n)
n } and

Fπ is the simple process induced by πn.

The stochastic integral of F ∈ L(0, T ) is constructed
from Riemann sums using the Wick product as

n−1∑
i=0

Fπ
ti
� (BH(ti+1) −BH(ti)). (4)

Theorem 2.1 Let F be a process in L(0, T ). The
limit in L2(P ) of Riemann sums of the form (4) ex-
ists for each sequence of partitions (πn, n ∈ N) such
that |πn| → 0 as n → ∞ and the limit does not depend
on the sequence of partitions. This limit is denoted as∫ T

0
FdBH . Furthermore, E[

∫ T

0
FdBH ] = 0 and

E

∣∣∣∣∣
∫ T

0

FdBH

∣∣∣∣∣
2

= E




(∫ T

0

Dφ
sFsds

)2

+ |F |2φ


 . (5)

A stochastic integral of Stratonovich type is now de-
fined.

Definition 2.4 Let (πn, n ∈ N) be a sequence of par-
titions of [0, T ] such that |πn| → 0 as n → ∞ and is
dense. If the sequence of random variables(

n−1∑
i=0

F (t(n)
i )(BH(t(n)

i+1) −BH(t(n)
i ))

)

converges in L2(P ) to the same limit for each sequence
of partitions, then this limit is called the stochastic
integral of Stratonovich type and the limit is denoted∫ T

0
FδBH .

The two stochastic integrals are related in the following
result.

Theorem 2.2 If F ∈ L(0, T ), then the stochastic inte-
gral of Stratonovich type exists and the following equal-
ity is satisfied∫ T

0

FδBH =
∫ T

0

FdBH +
∫ T

0

Dφ
sFsds a.s. (6)
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The sequence of Hermite polynomials (Hn, n ∈ N)
where degHn = n can be defined by a generating func-
tion as

etx−(1/2)t2 =
∞∑

n=0

tnHn(x)
n!

.

Define

f̃(t) = |f1[0,t]|−1
φ

∫ t

0

fdBH

and
Hφ,f

n (t) = |f1[0,t]|nφHn(f̃(t)).

As an application of an Itô formula for fractional Brow-
nian motion (Theorem 4.3, [5]) there is the following
result.

Proposition 2.1 If f1[0,T ] ∈ L2
φ, then the following

equality is satisfied

dHφ,f
n (t) = nHφ,f

n−1(t)f(t)dBH(t)

3 Multiple Integrals

Let f ∈ L2
φ be such that |f |φ = 1. The Wick exponen-

tial, exp�, and the Wick logarithm, log�, are defined
as

exp�
(∫ ∞

0

fdBH

)
:=

∞∑
n=0

1
n!

(∫ ∞

0

fdBH

)�n

and

log�
(

1 +
∫ ∞

0

fdBH

)
:=

∞∑
n=0

(−1)n−1

n

(∫ ∞

0

fdBH

)�n

where (
∫ ∞
0

fdBH)�n is the nth Wick power of∫ ∞
0

fdBH . This nth Wick power can be expressed in
terms of the Hermite polynomial Hn.

Lemma 3.1 If f ∈ L2
φ with |f |φ = 1 then(∫ ∞

0

fdBH

)�n

= Hn(
∫ ∞

0

fdBH)�n

for each n ∈ N where Hn is the Hermite polynomial of
degree n.

More generally, if f ∈ L2
φ then

(∫ ∞

0

fdBH

)�n

= |f |nφ

(∫ ∞
0

fdBH

|f |φ

)�n

= |f |nφHn

(∫ ∞
0

fdBH

|f |φ

)
.

The Wick exponential can be expressed in terms of the
usual exponential as follows.

Proposition 3.1 If f ∈ L2
φ, then

exp�
(∫ ∞

0

fdBH

)
= exp

(∫ ∞

0

fdBH − 1
2
|f |2φ

)
. (7)

This exponential (7) is the Radon-Nikodym derivative
of the following translate of a fractional Brownian mo-
tion

X(t) = BH(t) +
∫ t

0

(Φf)(s)ds

and
(Φf)(t) =

∫ ∞

0

φ(t, u)f(u)du.

The following expectation is useful in computations
with multiple integrals of a fractional Brownian motion.

Lemma 3.2 If f1, . . . , fn, g1, . . . , gm ∈ L2
φ, then the

following equality is satisfied

E

[ (∫ ∞

0

f1dB
H � · · · �

∫ ∞

0

fndB
H

)

×
(∫ ∞

0

g1dB
H � · · · �

∫ ∞

0

gmdB
H

) ]

=




0 if m �= n
1
n!

∑
σ

〈f1, gσ(1)〉φ · · · 〈fn, gσ(n)〉φ if m = n

where
∑

σ denotes the sum over all permutations σ of
{1, . . . , n}.

The Hilbert space L2
φ is extended to its nth symmetric

tensor product, that is,

L2
φ,n := L2

φ ⊗ · · · ⊗ L2
φ.

If f ∈ L2
φ,n, that is, f : R

n
+ → R and is symmetric in

its arguments then

〈f, f〉φ :=
∫

R
n
+

φ(u1 − v1) · · ·φ(un − vn)f(u1, . . . , un)

× f(v1, . . . , vn)du1 · · · dundv1 · · · dvn.

If f ∈ L2
φ,n is of the form

f(s1, . . . , sn) =
∑

ak1···kn
ek1(s1) · · · ekn

(sn)

and (en, n ∈ N) is a complete orthonormal basis of L2
φ,

then the multiple integral of f , In(f) is defined as

In(f) =
∑

ak1···kn

∫ ∞

0

ek1dB
H · · ·

∫ ∞

0

ekndB
H . (8)

This definition of multiple integral is easily extended to
an arbitrary f ∈ L2

φ,n.

The following result gives the expectation of a product
of two multiple integrals.
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Lemma 3.3 If f ∈ L2
φ,n and g ∈ L2

φ,m, then

E[In(f)Im(f)] =

{
〈f, g〉φ if m = n

0 if m �= n

The iterated integral can be defined by the natural re-
cursion∫

0≤s1<···<sn≤t

f(s1, . . . , sn)dBH(s1) · · · dBH(sn)

=
∫ t

0

(∫
0≤s1<···≤sn

f(s1, . . . , sn)

× dBH(s1) · · · dBH(sn−1)

)
dBH(sn)

(9)

The following result relates this iterated integral (9)
and the multiple integral (8).

Theorem 3.1 If f ∈ L2
φ,n, then the iterated integral

(9) exists and

In(f) = n!
∫

0≤s1<···<sn≤t

f(s1, . . . , sn)dBH(s1) · · ·

× dBH(sn).

If f ∈ L2
φ,n is a simple function of the form

f(t1, · · · , tn) =
∑

ai1···infi1(t1) · · · fin(tn),

then the φ-trace Trφ and its powers Trk
φ for k ∈

{1, 2, . . . , [n/2]} are defined as

Trk
φf(t1, . . . , tn−2k)

=
∫ ∞

0

· · ·
∫ ∞

0

f(s1, . . . , s2k, t1, . . . , tn−2k)

× φ(s1 − s2) · · ·φ(s2k−1 − s2k)
× ds1 · · · ds2k.

To define the trace in general let γε be an approximation
to the Dirac function, that is,

lim
ε↓0

∫
γε(s, t)f(s)ds = f(t)

in some sense and∫ ∞

0

∫ ∞

0

γε(s, t)dsdt < ∞.

If f ∈ L2
φ,n, then fε ∈ L2

φ,n where

fε(t1, · · · , tn)

=
∫

R
n
+

f(s1, . . . , sn)γε(s1, t1) · · · γε(sn, tn)ds1 · · · dsn.

Let

ρε(s, t) =
∫ ∞

0

γε(s, u)γε(t, u)du.

The kth φ-trace of fε is

Trk
φf

ε(t1, . . . , tn−2k)

=
∫

R
n
+

f(s1, . . . , sn)ρε(s1, s2) · · · ρε(s2k−1, s2k)

× γε(s2k−1, t1) · · · γε(s2n, tn−2k)
× ds1 · · · dsn.

The kth trace of f is said to exist if

Trk
φf(t1, . . . , tn−2k) = lim

ε→0
Trk

φf
ε(t1, . . . , tn−2k).

Now multiple Stratonovich integrals of a fractional
Brownian motion are defined. Let

(BH(t))ε =
∫ ∞

0

γε(t, s)dBH(s)

and f ∈ L2
φ,n. Define

Sε
n(f) =

∫
R

n
+

f(s1, . . . , sn)(BH(s1))ε · · · (BH(s1))ε

× ds1 · · · dsn. (10)

If Sε
n(f) converges in L2(P ) as ε → 0, then the multiple

Stratonovich integral is said to exist and is denoted

Sn(f) =
∫

R
n
+

f(s1, . . . , sn)δBH(s1) · · · δBH(sn). (11)

It follows that(∫ ∞

0

fdBH

)n

=
∑

k≤[n/2]

n!
2kk!(n− 2k)!

In−2k

(
Trk

φf
⊗n

)

where f⊗n is the symmetric tensor product of f . More
generally, if f1, . . . , fn ∈ L2

φ and f ∈ L2
φ,n is the sym-

metrization of f1, . . . , fn, then∫ ∞

0

f1dB
H · · ·

∫ ∞

0

fndB
H

=
∑

k≤[n/2]

n!
2kk!(n− 2k)!

In−2k

(
Trk

φ(f)
)

and Sε
n(f) can be defined as in (10). If for k ∈

{1, . . . , [n/2]}∫
R

n
+

f(s1, . . . , sn)γε(s1, s2) · · · γε(s2k−1, s2k)

× γε(s2k+1, t1) · · · γε(s2n, tn−2k)ds1 · · · dsn.
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converges to a function Trk
φf in L2

φ,n−2k as ε → 0 then
(Sε

n(f), n ∈ N) converges in L2(P ) and the limit, which
is called the extended Hu-Meyer formula [6], is

Sn(f) =
∑

k≤[n/2]

n!
2kk!(n− 2k)!

In−2k

(
Trk

φ(f)
)
.

For Brownian motion, there is a well known expansion
of any square integrable functional on Wiener space in
terms of multiple Wiener integrals [9] or Hermite poly-
nomials. The following result is the analogue for a frac-
tional Brownian motion with H ∈ (1/2, 1).

Theorem 3.2 If F ∈ L2(P ), then there is a sequence
fn ∈ L2

φ,n, n ∈ N) such that

∞∑
n=1

|fn|2φ < ∞

and

F = E(F ) +
∞∑

n=1

∫
R

n
+

fn(s1, . . . , sn)

× dBH(s1) · · · dBH(sn) a.s.
(12)

The multiple integrals on the right hand side of (12)
can be expressed as iterated integrals so that F can be
expressed as a sum of a constant and a stochastic in-
tegral. This result has many applications in stochastic
analysis.
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