Stochastic Calculus for Fractional Brownian Motion. I: Theory ${ }^{1}$

T. E. Duncan
Department of Mathematics
University of Kansas
Lawrence, KS 66045
U.S.A.
duncan@math.ukans.edu

Y. Z. Hu
Department of Mathematics
University of Kansas
Lawrence, KS 66045
U.S.A.
hu@math.ukans.edu

B. Pasik-Duncan
Department of Mathematics
University of Kansas
Lawrence, KS 66045
U.S.A.
bozenna@math.ukans.edu

Abstract

This paper describes some of the results in [5] for a stochastic calculus for a fractional Brownian motion with the Hurst parameter in the interval $(1 / 2,1)$. Two stochastic integrals are defined with explicit expressions for their first two moments. Multiple and iterated integrals of a fractional Browinian motion are defined and various properties of these integrals are given. A square integrable functional on a probability space of a fractional Brownian motion is expressed as an infinite series of multiple integrals.

1 Introduction

Fractional Brownian motion is a family of Gaussian processes that are indexed by the Hurst parameter H in the interval $(0,1)$. These processes were introduced by Kolmogorov [10]. The first application of these processes was made by Hurst [7], [8] who used them to model the long term storage capacity of reservoirs along the Nile River. Mandelbrot [12] used these processes to model some economic time series and most recently these processes have been used to model telecommunication traffic (e.g., [11]). Two important properties of these Gaussian processes for modeling are self similarity and, for $H \in(1 / 2,1)$, a long range dependence. The self similarity means that if $a>0$ then $\left(B^{H}(a t), t \geq 0\right)$ and $\left(a^{H} B^{H}(t), t \geq 0\right)$ have the same probability law where ($B^{H}(t), t \geq 0$) is a (standard) fractional Brownian motion. The long range dependence means that if $r(n)=$ $\mathbb{E}\left[B^{H}(1)\left(B^{H}(n+1)-B^{H}(n)\right)\right]$ then $\sum_{n=1}^{\infty} r(n)=\infty$.

Now a fractional Brownian motion is defined. For each $H \in(0,1)$, a real-valued Gaussian process $\left(B^{H}(t), t \geq\right.$ $0)$ is defined such that $\mathbb{E}\left[B^{H}(t)\right]=0$ and

$$
\mathbb{E}\left[B^{H}(t) B^{H}(s)\right]=\frac{1}{2}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right]
$$

[^0]for all $s, t \in \mathbb{R}_{+}$. If $H=1 / 2$ then the fractional Brownian motion is a standard Brownian motion (Wiener process). These processes have a version with continuous sample paths. In this paper H is restricted to the interval $(1 / 2,1)$. The p th variation of such a process is nonzero and finite for $p=1 / H$, that is, if ($P_{n}, n \in \mathbb{N}$) is sequence of partitions of $[0,1]$ that are refinements of the previous and become dense in $[0,1]$ then
$$
\lim _{n \rightarrow \infty} \sum\left|B^{H}\left(t_{i}^{(n)}\right)-B^{H}\left(t_{i-1}^{(n)}\right)\right|^{p}=c(p) \quad \text { a.s. }
$$
where $P_{n}=\left\{t_{0}^{(n)}, \ldots, t_{n}^{(n)}\right\}$ and $c(p)=\mathbb{E}\left|B^{H}(1)\right|^{p}$ (e.g., [13]). For $H>1 / 2,\left(B^{H}(t), t \geq 0\right)$ is not a semimartingale and not Markov. These facts require that a different stochastic calculus be used.

In this paper some results of a stochastic calculus from [5] are described. This description complements [4]. Some other approaches to stochastic calculus have been given in [1], [2], [3]. In Section 2, a directional derivative in the path space is given and two stochastic integrals with respect to a fractional Brownian motion are defined. The Wick product and the Hermite polynomials are introduced. In Section 3, multiple and iterated integrals with respect to a fractional Brownian motion are shown to satisfy many properties that are satisfied for the analogous integrals with respect to a Brownian motion. A square integrable functional on a probability space of a fractional Brownian motion is expressed as an infinite series of multiple integrals, which generalizes the well known result for Brownian motion.

2 Some Methods for Stochastic Calculus

Let $\Omega=C_{0}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ be the Fréchet space of real-valued continuous functions on \mathbb{R}_{+}with initial value zero and the topology of local uniform convergence. There is a probability measure, P^{H}, on (Ω, \mathcal{F}) where \mathcal{F} is the Borel σ-algebra such that on the probability space $\left(\Omega, \mathcal{F}, P^{H}\right)$, the coordinate process is a fractional Brow-
nian motion, that is,

$$
B^{H}(t, \omega)=\omega(t)
$$

for each $t \in \mathbb{R}_{+}$and (almost all) $\omega \in \Omega$.
Let $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$be given by

$$
\begin{equation*}
\phi(t)=H(2 H-1)|t|^{2 H-2} \tag{1}
\end{equation*}
$$

It follows directly that

$$
\begin{equation*}
\mathbb{E}\left[B^{H}(t) B^{H}(s)\right]=\int_{0}^{t} \int_{0}^{s} \phi(u-v) d u d v \tag{2}
\end{equation*}
$$

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be Borel measurable. The function $f \in L_{\phi}^{2}$ if

$$
\begin{equation*}
|f|_{\phi}^{2}=\int_{0}^{\infty} \int_{0}^{\infty} f(s) f(t) \phi(s-t) d s d t<\infty \tag{3}
\end{equation*}
$$

The Hilbert space L_{ϕ}^{2} is naturally associated with the Gaussian process $\left(B^{H}(t), t \geq 0\right)$. The inner product on L_{ϕ}^{2} is denoted by $\langle\cdot, \cdot\rangle_{\phi}$.

A notion of directional derivative in Ω in directions associated with L_{ϕ}^{2} is important in some computations with stochastic integrals.

Definition 2.1 The ϕ-derivative of a random variable $F \in L^{p}$ in the direction Φg for $g \in L_{\phi}^{2}$ is defined as

$$
D_{\Phi g} F(\omega)=\lim _{\delta \rightarrow 0} \frac{1}{\delta}\left[F\left(\omega+\delta \int_{0}^{\cdot}(\Phi g)(s) d s\right)-F(\omega)\right]
$$

if the limit exists in L^{p} where

$$
(\Phi g)(t)=\int_{0}^{\infty} \phi(t-u) g(u) d u
$$

and $t \geq 0$. Furthermore, if there is a process $\left(D_{s}^{\phi} F, s \geq\right.$ 0) such that

$$
D_{\Phi g} F=\int_{0}^{\infty} D_{s}^{\phi} F g(s) d s
$$

for each $g \in L_{\phi}^{2}$ then the random variable F is said to be ϕ-differentiable.

The notion of ϕ-differentiability is also defined for a process.

Definition 2.2 The process $(F(t), t \geq 0)$ is said to be ϕ-differentiable if for each $t \in \mathbb{R}_{+}, F(t)$ is ϕ differentiable and $D^{\phi} F: \mathbb{R}_{+} \times \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ is jointly measurable.

The Wick product of two random variables is denoted \diamond. This product is important in the construction of the stochastic integrals (of Itô type).

Definition 2.3 Let $\mathcal{L}(0, T)$ be the family of processes on $[0, T]$ such that $F \in \mathcal{L}(0, T)$ if $\mathbb{E}|F|_{\phi}^{2}<\infty, F$ is ϕ-differentiable, the trace of ($D_{s}^{\phi} F_{t}, s, t \in[0, T]$) exists and $\mathbb{E} \int_{0}^{T}\left(D_{s}^{\phi} F_{s}\right)^{2} d s<\infty$ and for each sequence of partitions $\left(\pi_{n}, n \in \mathbb{N}\right)$ of $[0, T]$ such that $\left|\pi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$

$$
\sum_{i=0}^{n-1} \mathbb{E}\left[\int_{t_{i}^{(n)}}^{t_{i+1}^{(n)}}\left|D_{s}^{\phi} F_{t_{i}^{(n)}}-D_{s}^{\phi} F_{s}\right| d s\right]^{2}
$$

and

$$
\mathbb{E}\left|F^{\pi}-F\right|_{\phi}^{2}
$$

tend to 0 as $n \rightarrow \infty$ where $\pi_{n}=\left\{t_{0}^{(n)}, \ldots, t_{n}^{(n)}\right\}$ and F^{π} is the simple process induced by π_{n}.

The stochastic integral of $F \in \mathcal{L}(0, T)$ is constructed from Riemann sums using the Wick product as

$$
\begin{equation*}
\sum_{i=0}^{n-1} F_{t_{i}}^{\pi} \diamond\left(B^{H}\left(t_{i+1}\right)-B^{H}\left(t_{i}\right)\right) \tag{4}
\end{equation*}
$$

Theorem 2.1 Let F be a process in $\mathcal{L}(0, T)$. The limit in $L^{2}(P)$ of Riemann sums of the form (4) exists for each sequence of partitions $\left(\pi_{n}, n \in \mathbb{N}\right)$ such that $\left|\pi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ and the limit does not depend on the sequence of partitions. This limit is denoted as $\int_{0}^{T} F d B^{H}$. Furthermore, $\mathbb{E}\left[\int_{0}^{T} F d B^{H}\right]=0$ and

$$
\begin{equation*}
\mathbb{E}\left|\int_{0}^{T} F d B^{H}\right|^{2}=\mathbb{E}\left[\left(\int_{0}^{T} D_{s}^{\phi} F_{s} d s\right)^{2}+|F|_{\phi}^{2}\right] \tag{5}
\end{equation*}
$$

A stochastic integral of Stratonovich type is now defined.

Definition 2.4 Let $\left(\pi_{n}, n \in \mathbb{N}\right)$ be a sequence of partitions of $[0, T]$ such that $\left|\pi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ and is dense. If the sequence of random variables

$$
\left(\sum_{i=0}^{n-1} F\left(t_{i}^{(n)}\right)\left(B^{H}\left(t_{i+1}^{(n)}\right)-B^{H}\left(t_{i}^{(n)}\right)\right)\right)
$$

converges in $L^{2}(P)$ to the same limit for each sequence of partitions, then this limit is called the stochastic integral of Stratonovich type and the limit is denoted $\int_{0}^{T} F \delta B^{H}$.

The two stochastic integrals are related in the following result.

Theorem 2.2 If $F \in \mathcal{L}(0, T)$, then the stochastic integral of Stratonovich type exists and the following equality is satisfied

$$
\begin{equation*}
\int_{0}^{T} F \delta B^{H}=\int_{0}^{T} F d B^{H}+\int_{0}^{T} D_{s}^{\phi} F_{s} d s \quad \text { a.s. } \tag{6}
\end{equation*}
$$

The sequence of Hermite polynomials ($H_{n}, n \in \mathbb{N}$) where $\operatorname{deg} H_{n}=n$ can be defined by a generating function as

$$
e^{t x-(1 / 2) t^{2}}=\sum_{n=0}^{\infty} \frac{t^{n} H_{n}(x)}{n!}
$$

Define

$$
\tilde{f}(t)=\left|f 1_{[0, t]}\right|_{\phi}^{-1} \int_{0}^{t} f d B^{H}
$$

and

$$
H_{n}^{\phi, f}(t)=\left|f 1_{[0, t]}\right|_{\phi}^{n} H^{n}(\tilde{f}(t)) .
$$

As an application of an Itô formula for fractional Brownian motion (Theorem 4.3, [5]) there is the following result.

Proposition 2.1 If $f 1_{[0, T]} \in L_{\phi}^{2}$, then the following equality is satisfied

$$
d H_{n}^{\phi, f}(t)=n H_{n-1}^{\phi, f}(t) f(t) d B^{H}(t)
$$

3 Multiple Integrals

Let $f \in L_{\phi}^{2}$ be such that $|f|_{\phi}=1$. The Wick exponential, $\exp ^{\diamond}$, and the Wick logarithm, $\log ^{\diamond}$, are defined as

$$
\exp ^{\diamond}\left(\int_{0}^{\infty} f d B^{H}\right):=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n}
$$

and
$\log ^{\diamond}\left(1+\int_{0}^{\infty} f d B^{H}\right):=\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n}$
where $\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n}$ is the nth Wick power of $\int_{0}^{\infty} f d B^{H}$. This nth Wick power can be expressed in terms of the Hermite polynomial H_{n}.

Lemma 3.1 If $f \in L_{\phi}^{2}$ with $|f|_{\phi}=1$ then

$$
\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n}=H_{n}\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n}
$$

for each $n \in \mathbb{N}$ where H_{n} is the Hermite polynomial of degree n.

More generally, if $f \in L_{\phi}^{2}$ then

$$
\begin{aligned}
\left(\int_{0}^{\infty} f d B^{H}\right)^{\diamond n} & =|f|_{\phi}^{n}\left(\frac{\int_{0}^{\infty} f d B^{H}}{|f|_{\phi}}\right)^{\diamond n} \\
& =|f|_{\phi}^{n} H_{n}\left(\frac{\int_{0}^{\infty} f d B^{H}}{|f|_{\phi}}\right)
\end{aligned}
$$

The Wick exponential can be expressed in terms of the usual exponential as follows.

Proposition 3.1 If $f \in L_{\phi}^{2}$, then

$$
\begin{equation*}
\exp ^{\diamond}\left(\int_{0}^{\infty} f d B^{H}\right)=\exp \left(\int_{0}^{\infty} f d B^{H}-\frac{1}{2}|f|_{\phi}^{2}\right) \tag{7}
\end{equation*}
$$

This exponential (7) is the Radon-Nikodym derivative of the following translate of a fractional Brownian motion

$$
X(t)=B^{H}(t)+\int_{0}^{t}(\Phi f)(s) d s
$$

and

$$
(\Phi f)(t)=\int_{0}^{\infty} \phi(t, u) f(u) d u
$$

The following expectation is useful in computations with multiple integrals of a fractional Brownian motion.

Lemma 3.2 If $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{m} \in L_{\phi}^{2}$, then the following equality is satisfied

$$
\begin{aligned}
& \mathbb{E}\left[\left(\int_{0}^{\infty} f_{1} d B^{H} \diamond \cdots \diamond \int_{0}^{\infty} f_{n} d B^{H}\right)\right. \\
& \left.\quad \times\left(\int_{0}^{\infty} g_{1} d B^{H} \diamond \cdots \diamond \int_{0}^{\infty} g_{m} d B^{H}\right)\right] \\
& \quad= \begin{cases}0 & \text { if } m \neq n \\
\frac{1}{n!} \sum_{\sigma}\left\langle f_{1}, g_{\sigma(1)}\right\rangle_{\phi} \cdots\left\langle f_{n}, g_{\sigma(n)}\right\rangle_{\phi} & \text { if } m=n\end{cases}
\end{aligned}
$$

where \sum_{σ} denotes the sum over all permutations σ of $\{1, \ldots, n\}$.

The Hilbert space L_{ϕ}^{2} is extended to its nth symmetric tensor product, that is,

$$
L_{\phi, n}^{2}:=L_{\phi}^{2} \otimes \cdots \otimes L_{\phi}^{2}
$$

If $f \in L_{\phi, n}^{2}$, that is, $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ and is symmetric in its arguments then

$$
\begin{aligned}
\langle f, f\rangle_{\phi}:=\int_{\mathbb{R}_{+}^{n}} & \phi\left(u_{1}-v_{1}\right) \cdots \phi\left(u_{n}-v_{n}\right) f\left(u_{1}, \ldots, u_{n}\right) \\
& \times f\left(v_{1}, \ldots, v_{n}\right) d u_{1} \cdots d u_{n} d v_{1} \cdots d v_{n}
\end{aligned}
$$

If $f \in L_{\phi, n}^{2}$ is of the form

$$
f\left(s_{1}, \ldots, s_{n}\right)=\sum a_{k_{1} \cdots k_{n}} e_{k_{1}}\left(s_{1}\right) \cdots e_{k_{n}}\left(s_{n}\right)
$$

and $\left(e_{n}, n \in \mathbb{N}\right)$ is a complete orthonormal basis of L_{ϕ}^{2}, then the multiple integral of $f, I_{n}(f)$ is defined as

$$
\begin{equation*}
I_{n}(f)=\sum a_{k_{1} \cdots k_{n}} \int_{0}^{\infty} e_{k_{1}} d B^{H} \cdots \int_{0}^{\infty} e_{k_{n}} d B^{H} \tag{8}
\end{equation*}
$$

This definition of multiple integral is easily extended to an arbitrary $f \in L_{\phi, n}^{2}$.

The following result gives the expectation of a product of two multiple integrals.

Lemma 3.3 If $f \in L_{\phi, n}^{2}$ and $g \in L_{\phi, m}^{2}$, then

$$
\mathbb{E}\left[I_{n}(f) I_{m}(f)\right]= \begin{cases}\langle f, g\rangle_{\phi} & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

The iterated integral can be defined by the natural recursion

$$
\begin{align*}
& \int_{0 \leq s_{1}<\cdots<s_{n} \leq t} f\left(s_{1}, \ldots, s_{n}\right) d B^{H}\left(s_{1}\right) \cdots d B^{H}\left(s_{n}\right) \\
&= \int_{0}^{t}\left(\int_{0 \leq s_{1}<\cdots \leq s_{n}} f\left(s_{1}, \ldots, s_{n}\right)\right. \\
&\left.\times d B^{H}\left(s_{1}\right) \cdots d B^{H}\left(s_{n-1}\right)\right) d B^{H}\left(s_{n}\right) \tag{9}
\end{align*}
$$

The following result relates this iterated integral (9) and the multiple integral (8).

Theorem 3.1 If $f \in L_{\phi, n}^{2}$, then the iterated integral (9) exists and

$$
\begin{gathered}
I_{n}(f)=n!\int_{0 \leq s_{1}<\cdots<s_{n} \leq t} f\left(s_{1}, \ldots, s_{n}\right) d B^{H}\left(s_{1}\right) \cdots \\
\times d B^{H}\left(s_{n}\right)
\end{gathered}
$$

If $f \in L_{\phi, n}^{2}$ is a simple function of the form

$$
f\left(t_{1}, \cdots, t_{n}\right)=\sum a_{i_{1} \cdots i_{n}} f_{i_{1}}\left(t_{1}\right) \cdots f_{i_{n}}\left(t_{n}\right)
$$

then the ϕ-trace Tr_{ϕ} and its powers $\operatorname{Tr}_{\phi}^{k}$ for $k \in$ $\{1,2, \ldots,[n / 2]\}$ are defined as

$$
\begin{aligned}
\operatorname{Tr}_{\phi}^{k} f\left(t_{1}, \ldots, t_{n-2 k}\right) & \\
=\int_{0}^{\infty} \cdots \int_{0}^{\infty} & f\left(s_{1}, \ldots, s_{2 k}, t_{1}, \ldots, t_{n-2 k}\right) \\
& \times \phi\left(s_{1}-s_{2}\right) \cdots \phi\left(s_{2 k-1}-s_{2 k}\right) \\
& \times d s_{1} \cdots d s_{2 k}
\end{aligned}
$$

To define the trace in general let γ_{ε} be an approximation to the Dirac function, that is,

$$
\lim _{\varepsilon \downarrow 0} \int \gamma_{\varepsilon}(s, t) f(s) d s=f(t)
$$

in some sense and

$$
\int_{0}^{\infty} \int_{0}^{\infty} \gamma_{\varepsilon}(s, t) d s d t<\infty
$$

If $f \in L_{\phi, n}^{2}$, then $f^{\varepsilon} \in L_{\phi, n}^{2}$ where
$f^{\varepsilon}\left(t_{1}, \cdots, t_{n}\right)$
$=\int_{\mathbb{R}_{+}^{n}} f\left(s_{1}, \ldots, s_{n}\right) \gamma_{\varepsilon}\left(s_{1}, t_{1}\right) \cdots \gamma_{\varepsilon}\left(s_{n}, t_{n}\right) d s_{1} \cdots d s_{n}$.

Let

$$
\rho_{\varepsilon}(s, t)=\int_{0}^{\infty} \gamma_{\varepsilon}(s, u) \gamma_{\varepsilon}(t, u) d u
$$

The k th ϕ-trace of f^{ε} is

$$
\begin{aligned}
& \operatorname{Tr}_{\phi}^{k} f^{\varepsilon}\left(t_{1}, \ldots, t_{n-2 k}\right) \\
& =\int_{\mathbb{R}_{+}^{n}} f\left(s_{1}, \ldots, s_{n}\right) \rho_{\varepsilon}\left(s_{1}, s_{2}\right) \cdots \rho_{\varepsilon}\left(s_{2 k-1}, s_{2 k}\right) \\
& \quad \times \gamma_{\varepsilon}\left(s_{2 k-1}, t_{1}\right) \cdots \gamma_{\varepsilon}\left(s_{2 n}, t_{n-2 k}\right) \\
& \quad \times d s_{1} \cdots d s_{n}
\end{aligned}
$$

The k th trace of f is said to exist if

$$
\operatorname{Tr}_{\phi}^{k} f\left(t_{1}, \ldots, t_{n-2 k}\right)=\lim _{\varepsilon \rightarrow 0} \operatorname{Tr}_{\phi}^{k} f^{\varepsilon}\left(t_{1}, \ldots, t_{n-2 k}\right)
$$

Now multiple Stratonovich integrals of a fractional Brownian motion are defined. Let

$$
\left(B^{H}(t)\right)^{\varepsilon}=\int_{0}^{\infty} \gamma_{\varepsilon}(t, s) d B^{H}(s)
$$

and $f \in L_{\phi, n}^{2}$. Define

$$
\begin{array}{rl}
S_{n}^{\varepsilon}(f)=\int_{\mathbb{R}_{+}^{n}} & f\left(s_{1}, \ldots, s_{n}\right)\left(B^{H}\left(s_{1}\right)\right)^{\varepsilon} \cdots\left(B^{H}\left(s_{1}\right)\right)^{\varepsilon} \\
& \times d s_{1} \cdots d s_{n} \tag{10}
\end{array}
$$

If $S_{n}^{\varepsilon}(f)$ converges in $L^{2}(P)$ as $\varepsilon \rightarrow 0$, then the multiple Stratonovich integral is said to exist and is denoted

$$
\begin{equation*}
S_{n}(f)=\int_{\mathbb{R}_{+}^{n}} f\left(s_{1}, \ldots, s_{n}\right) \delta B^{H}\left(s_{1}\right) \cdots \delta B^{H}\left(s_{n}\right) \tag{11}
\end{equation*}
$$

It follows that

$$
\left(\int_{0}^{\infty} f d B^{H}\right)^{n}=\sum_{k \leq[n / 2]} \frac{n!}{2^{k} k!(n-2 k)!} I_{n-2 k}\left(\operatorname{Tr}_{\phi}^{k} f^{\otimes n}\right)
$$

where $f^{\otimes n}$ is the symmetric tensor product of f. More generally, if $f_{1}, \ldots, f_{n} \in L_{\phi}^{2}$ and $f \in L_{\phi, n}^{2}$ is the symmetrization of f_{1}, \ldots, f_{n}, then

$$
\begin{aligned}
\int_{0}^{\infty} & f_{1} d B^{H} \cdots \int_{0}^{\infty} f_{n} d B^{H} \\
& =\sum_{k \leq[n / 2]} \frac{n!}{2^{k} k!(n-2 k)!} I_{n-2 k}\left(\operatorname{Tr}_{\phi}^{k}(f)\right)
\end{aligned}
$$

and $S_{n}^{\varepsilon}(f)$ can be defined as in (10). If for $k \in$ $\{1, \ldots,[n / 2]\}$

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{n}} f\left(s_{1}, \ldots, s_{n}\right) \gamma_{\varepsilon}\left(s_{1}, s_{2}\right) \cdots \gamma_{\varepsilon}\left(s_{2 k-1}, s_{2 k}\right) \\
& \quad \times \gamma_{\varepsilon}\left(s_{2 k+1}, t_{1}\right) \cdots \gamma_{\varepsilon}\left(s_{2 n}, t_{n-2 k}\right) d s_{1} \cdots d s_{n}
\end{aligned}
$$

converges to a function $\operatorname{Tr}_{\phi}^{k} f$ in $L_{\phi, n-2 k}^{2}$ as $\varepsilon \rightarrow 0$ then $\left(S_{n}^{\varepsilon}(f), n \in \mathbb{N}\right)$ converges in $L^{2}(P)$ and the limit, which is called the extended Hu-Meyer formula [6], is

$$
S_{n}(f)=\sum_{k \leq[n / 2]} \frac{n!}{2^{k} k!(n-2 k)!} I_{n-2 k}\left(\operatorname{Tr}_{\phi}^{k}(f)\right) .
$$

For Brownian motion, there is a well known expansion of any square integrable functional on Wiener space in terms of multiple Wiener integrals [9] or Hermite polynomials. The following result is the analogue for a fractional Brownian motion with $H \in(1 / 2,1)$.

Theorem 3.2 If $F \in L^{2}(P)$, then there is a sequence $\left.f_{n} \in L_{\phi, n}^{2}, n \in \mathbb{N}\right)$ such that

$$
\sum_{n=1}^{\infty}\left|f_{n}\right|_{\phi}^{2}<\infty
$$

and

$$
\begin{align*}
F=\mathbb{E}(F)+\sum_{n=1}^{\infty} \int_{\mathbb{R}_{+}^{n}} & f_{n}\left(s_{1}, \ldots, s_{n}\right) \\
& \times d B^{H}\left(s_{1}\right) \cdots d B^{H}\left(s_{n}\right) \quad \text { a.s. } \tag{12}
\end{align*}
$$

The multiple integrals on the right hand side of (12) can be expressed as iterated integrals so that F can be expressed as a sum of a constant and a stochastic integral. This result has many applications in stochastic analysis.

References

[1] E. Alos, O. Mazet, and D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than $1 / 2$, Stochastic Processes Appl. 86(2000), 121-139.
[2] P. Carmona and L. Coutin, Stochastic integration with respect to fractional Brownian motion. Preprint.
[3] L. Decreusefond and A. S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Analysis, 10(1999), 177-214.
[4] T. E. Duncan, Y. Z. Hu, and B. Pasik-Duncan, Some methods of stochastic calculus for fractional Brownian motion. Proc. 38th Conf. Decision and Control, Phoenix, 1999, 2390-2393.
[5] T. E. Duncan, Y. Z. Hu, and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I: Theory, SIAM J. Control Optim., 38(2000), 582-612.
[6] Y. Z. Hu and P. A. Meyer, Sur les intégrales multiples de Stratonovich, in Séminaire de Probabilités XXVI, J. Azema, P. A. Meyer and M. Yor, eds., Lecture Notes in Math. 1321, Springer-Verlag, New York, NY, 1988, 72-81.
[7] H. E. Hurst, Long-term storage capacity in reservoirs, Trans. Amer. Soc. Civil Eng., 116(1951), 400410.
[8] H. E. Hurst, Methods of using long-term storage in reservoirs, Proc. Inst. Civil Engineers, Part I, Chapter 5 (1956), 519-590.
[9] K. Itô, Multiple Wiener integrals, J. Math. Soc. Japan, 3(1951), 157-164.
[10] A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady) Acad. URSS (N.S.) 26(1940), 115-118.
[11] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of ethernet traffic, IEEE/ACM Trans. Networking, 2(1994), 1-15.
[12] B. B. Mandelbrot, The variation of certain speculative prices, Journal of Business, 36(1963), 394-419. Reprinted in P. H. Cootner, ed., The Random Character of Stock Market Prices, MIT Press, Cambridge, Mass., 1964, 297-337.
[13] L. C. G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance, 7 (1997), 95-105.

[^0]: ${ }^{1}$ Research supported partially by NSF Grant DMS 9971790

